Solving geometric problems

For more general problems involving vectors, often drawing a diagram helps!
[Textbook] $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ and \boldsymbol{D} are the points $(2,-5,-8)$, $(1,-7,-3),(0,15,-10)$ and $(2,19,-20)$ respectively.
a. Find $\overrightarrow{A B}$ and $\overrightarrow{D C}$, giving your answers in the form $\boldsymbol{p i}+\boldsymbol{q} \boldsymbol{j}+\boldsymbol{r k}$.
b. Show that the lines $A B$ and $D C$ are parallel and that $\overrightarrow{D C}=2 \overrightarrow{A B}$.
c. Hence describe the quadrilateral $A B C D$.
[Textbook] P, Q and R are the points $(4,-9,-3),(7,-7,-7)$ and $(8,-2,0)$ respectively. Find the coordinates of the point S so that $P Q R S$ forms a parallelogram.

There are many contexts in maths where we can 'compare coefficients', e.g.
$3 x^{2}+5 x \equiv A\left(x^{2}+1\right)+B x+C$
Comparing x^{2} terms: $3=A$
We can do the same with vectors:
[Textbook] Given that
$3 i+(p+2) j+120 k=p i-q j+4 p q r k$, find the values of p, q and r.
[Textbook] The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals $O E$ and $B G$ bisect each other.

The strategy behind this type of question is to find the point of intersection in 2 ways, and compare coefficients.

