i, j and k notation

In 2D you were previously introduced to $\boldsymbol{i}=\binom{1}{0}$ and $\boldsymbol{j}=\binom{0}{1}$ as unit vectors in each of the x and y directions.
It meant for example that $\binom{8}{-2}$ could be written as $8 \boldsymbol{i}-2 \boldsymbol{j}$ since $8\binom{1}{0}-2\binom{0}{1}=$ $\binom{8}{-2}$

Unsurprisingly, in 3D:

$$
i=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), j=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), k=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Quickfire Questions

1. Put in i, j, k notation:
$\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=$
$\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right)=$
2. Write as a column vector:
$4 \boldsymbol{j}+\boldsymbol{k}=$
$\boldsymbol{i}-\boldsymbol{j}=$
3. If $A(1,2,3), B(4,0,-1)$ then
$\overrightarrow{A B}=$
4. If $\boldsymbol{a}=\left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}0 \\ -1 \\ 3\end{array}\right)$ then $3 \boldsymbol{a}+2 \boldsymbol{b}=$

Examples

1. Find the magnitude of $\boldsymbol{a}=2 \boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k}$ and hence find $\widehat{\boldsymbol{a}}$, the unit vector in the direction of \boldsymbol{a}.
2. If $\boldsymbol{a}=\left(\begin{array}{c}2 \\ -3 \\ 5\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}4 \\ -2 \\ 0\end{array}\right)$ is $2 \boldsymbol{a}-3 \boldsymbol{b}$ parallel to $4 \boldsymbol{i}-5 \boldsymbol{k}$?

Angles between vectors and an axis

How could you work out the angle between a vector and the x-axis?

The angle between $a=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ and the x-axis is:

$$
\cos \theta_{x}=\frac{x}{|a|}
$$

and similarly for the y and z axes.
[Textbook] Find the angles that the vector $a=2 i-3 j-k$ makes with each of the positive coordinate axis.

Test Your Understanding

[Textbook] The points A and B have position vectors $\mathbf{4 i}+\mathbf{j} \boldsymbol{j}+\mathbf{k} \boldsymbol{k}$ and $3 i+4 j-k$ relative to a fixed origin, O. Find $\overrightarrow{A B}$ and show that $\triangle O A B$ is isosceles.
(a) Find the angle that the vector $a=2 i+j+k$ makes with the x-axis.
(b) By similarly considering the angle that $b=i+3 j+2 k$ makes with the x axis, determine the area of $O A B$ where $\overrightarrow{O A}=a$ and $\overrightarrow{O B}=b$. (Hint: draw a diagram)

