i, *j* and *k* notation

In 2D you were previously introduced to $\mathbf{i} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\mathbf{j} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ as unit vectors in each of the x and y directions. It meant for example that $\begin{pmatrix} 8 \\ -2 \end{pmatrix}$ could be written as $8\mathbf{i} - 2\mathbf{j}$ since $8\begin{pmatrix} 1 \\ 0 \end{pmatrix} - 2\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 8 \\ -2 \end{pmatrix}$

Unsurprisingly, in 3D:

$$i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Quickfire Questions

- 1. Put in *i*, *j*, *k* notation:
- $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} =$

$$\begin{pmatrix} 3\\0\\-1 \end{pmatrix} =$$

2. Write as a column vector:

4**j** + **k** =

i - j =

3. If
$$A(1,2,3)$$
, $B(4,0,-1)$ then
 $\overrightarrow{AB} =$

4. If
$$\boldsymbol{a} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix}$ then $3\boldsymbol{a} + 2\boldsymbol{b} =$

Examples

1. Find the magnitude of a = 2i - j + 4k and hence find \hat{a} , the unit vector in the direction of a.

2. If
$$\boldsymbol{a} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}$$
 and $\boldsymbol{b} = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$ is $2\boldsymbol{a} - 3\boldsymbol{b}$ parallel to $4\boldsymbol{i} - 5\boldsymbol{k}$?

Angles between vectors and an axis

How could you work out the angle between a vector and the *x*-axis?

[Textbook] Find the angles that the vector a = 2i - 3j - k makes with each of the positive coordinate axis.

Test Your Understanding

[Textbook] The points A and B have position vectors 4i + 2j + 7k and

3i + 4j - k relative to a fixed origin, *O*. Find \overrightarrow{AB} and show that $\triangle OAB$ is isosceles.

(a) Find the angle that the vector a = 2i + j + k makes with the *x*-axis.

(b) By similarly considering the angle that b = i + 3j + 2k makes with the *x*-axis, determine the area of *OAB* where $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$. (Hint: draw a diagram)