Pure 2

Vectors

Chapter Overview

1:: Distance between two points.
 2:: i, j, k notation for vectors
 3:: Magnitude of a 3D vector and using it to find angle between vector and a coordinate axis.

4:: Solving Geometric Problems

5:: Application to Mechanics

Topics	What students need to learn:		
	Content		Guidance
10 Vectors	10.1	Use vectors in two dimensions and in three dimensions	Students should be familiar with column vectors and with the use of i and \mathbf{j} unit vectors in two dimensions and \mathbf{i}, \mathbf{j} and \mathbf{k} unit vectors in three dimensions.
	10.2	Calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form.	Students should be able to find a unit vector in the direction of a, and be familiar with the notation $\|a\|$.
	10.3	Add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations.	The triangle and parallelogram laws of addition. Parallel vectors.
	10.4	Understand and use position vectors; calculate the distance between two points represented by position vectors.	$\overrightarrow{O B}-\overrightarrow{O A}=\overrightarrow{A B}=\mathrm{b}-\mathrm{a}$ The distance d between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $d^{2}=\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}$
	10.5	Use vectors to solve problems in pure mathematics and in context, (including forces).	For example, finding position vector of the fourth corner of a shape (e.g. parallelogram) $A B C D$ with three given position vectors for the corners A, B and C. Or use of ratio theorem to find position vector of a point C dividing $A B$ in a given ratio. Contexts such as velocity, displacement, kinematics and forces will be covered in Paper 3, Sections 6.1, 7.3 and 8.1 - 8.4

Distance from the origin and magnitude of a

vector

The magnitude of a vector $a=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$:

$$
|a|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

And the distance of (x, y, z) from the origin is

$$
\sqrt{x^{2}+y^{2}+z^{2}}
$$

Distance between two 3D points

The distance between two points is:

$$
d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}+(\Delta z)^{2}}
$$

Δx means "change in x "

Quickfire Questions:

Distance of $(4,0,-2)$ from the origin:

$$
\left|\left(\begin{array}{c}
5 \\
4 \\
-1
\end{array}\right)\right|=
$$

Distance between $(1,1,1)$ and $(2,1,0)$.

Distance between $(-5,2,0)$ and $(-2,-3,-3)$.

Tip: Because we're squaring, it doesn't matter whether the change is negative or positive.

Test Your Understanding So Far...

[Textbook] Find the distance from the origin to the point $P(7,7,7)$.
[Textbook] The coordinates of A and B are (5,3,-8) and (1, $k,-3)$ respectively. Given that the distance from A to B is $3 \sqrt{\mathbf{1 0}}$ units, find the possible values of \boldsymbol{k}.

