Pure 2

Vectors

Chapter Overview

- 1:: Distance between two points.
- 2:: *i*, *j*, *k* notation for vectors

3:: Magnitude of a 3D vector and using it to find angle between vector and a coordinate axis.

- 4:: Solving Geometric Problems
- 5:: Application to Mechanics

	What students need to learn:	
Topics	Content	Guidance
10 Vectors	10.1 Use vectors in two dimensions and in three dimensions	Students should be familiar with column vectors and with the use of i and j unit vectors in two dimensions and i, j and k unit vectors in three dimensions.
	10.2 Calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form	Students should be able to find a unit vector in the direction of a , and be familiar with the notation $ a $.
	10.3 Add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations.	
	10.4 Understand and use position vectors; calculate the distance between two points represented by position vectors.	$\overrightarrow{OB} - \overrightarrow{OA} = \overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ The distance <i>d</i> between two points (x_1, y_1) and (x_2, y_2) is given by $d^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2$
	10.5 Use vectors to solve problems in pure mathematics and in context, (including forces).	For example, finding position vector of the fourth corner of a shape (e.g. parallelogram) <i>ABCD</i> with three given position vectors for the corners <i>A</i> , <i>B</i> and <i>C</i> . Or use of ratio theorem to find position vector of a point <i>C</i> dividing <i>AB</i> in a given ratio. Contexts such as velocity, displacement, kinematics and forces will be covered in Paper 3, Sections 6.1, 7.3 and 8.1 – 8.4

Distance from the origin and magnitude of a vector

Distance between two 3D points

How do we find the distance between P and Q?

The distance between two points is:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}$$

 Δx means "change in x"

Quickfire Questions:

Distance of (4,0,-2) from the origin:

$$\left| \begin{pmatrix} 5\\4\\-1 \end{pmatrix} \right| =$$

Distance between (0,4,3) and (5,2,3).

Distance between (1,1,1) and (2,1,0).

Distance between (-5,2,0) and (-2, -3, -3).

Tip: Because we're squaring, it doesn't matter whether the change is negative or positive.

Test Your Understanding So Far...

[Textbook] Find the distance from the origin to the point P(7, 7, 7).

[Textbook] The coordinates of *A* and *B* are (5, 3, -8) and (1, k, -3) respectively. Given that the distance from *A* to *B* is $3\sqrt{10}$ units, find the possible values of *k*.

Ex 12A p.338