C4

1 a Express $\frac{x+4}{(1+x)(2-x)}$ in partial fractions.
b Given that $y=2$ when $x=3$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y(x+4)}{(1+x)(2-x)}
$$

2 Given that $y=0$ when $x=0$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x+y} \cos x
$$

3 Given that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is inversely proportional to x and that $y=4$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5}{3}$ when $x=3$, find an expression for y in terms of x.

4 A quantity has the value N at time t hours and is increasing at a rate proportional to N.
a Write down a differential equation relating N and t.
b By solving your differential equation, show that

$$
N=A \mathrm{e}^{k t}
$$

where A and k are constants and k is positive.
Given that when $t=0, N=40$ and that when $t=5, N=60$,
c find the values of A and k,
d find the value of N when $t=12$.
5 A cube is increasing in size and has volume $V \mathrm{~cm}^{3}$ and surface area $A \mathrm{~cm}^{2}$ at time t seconds.
a Show that

$$
\frac{\mathrm{d} V}{\mathrm{~d} A}=k \sqrt{A}
$$

where k is a positive constant.
Given that the rate at which the volume of the cube is increasing is proportional to its surface area and that when $t=10, A=100$ and $\frac{\mathrm{d} A}{\mathrm{~d} t}=5$,
b show that

$$
A=\frac{1}{16}(t+30)^{2} .
$$

6 At time $t=0$, a piece of radioactive material has mass 24 g . Its mass after t days is m grams and is decreasing at a rate proportional to m.
a By forming and solving a suitable differential equation, show that

$$
m=24 \mathrm{e}^{-k t}
$$

where k is a positive constant.
After 20 days, the mass of the material is found to be 22.6 g .
b Find the value of k.
c Find the rate at which the mass is decreasing after 20 days.
d Find how long it takes for the mass of the material to be halved.
$7 \quad$ A quantity has the value P at time t seconds and is decreasing at a rate proportional to \sqrt{P}.
a By forming and solving a suitable differential equation, show that

$$
P=(a-b t)^{2}
$$

where a and b are constants.
Given that when $t=0, P=400$,
b find the value of a.
Given also that when $t=30, P=100$,
c find the value of P when $t=50$.
8

The diagram shows a container in the shape of a right-circular cone. A quantity of water is poured into the container but this then leaks out from a small hole at its vertex.
In a model of the situation it is assumed that the rate at which the volume of water in the container, $V \mathrm{~cm}^{3}$, decreases is proportional to V. Given that the depth of the water is $h \mathrm{~cm}$ at time t minutes,
a show that

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=-k h
$$

where k is a positive constant.
Given also that $h=12$ when $t=0$ and that $h=10$ when $t=20$,
b show that

$$
h=12 \mathrm{e}^{-k t}
$$

and find the value of k,
c find the value of t when $h=6$.
$9 \quad \mathbf{a}$ Express $\frac{1}{(1+x)(1-x)}$ in partial fractions.
In an industrial process, the mass of a chemical, $m \mathrm{~kg}$, produced after t hours is modelled by the differential equation

$$
\frac{\mathrm{d} m}{\mathrm{~d} t}=k \mathrm{e}^{-t}(1+m)(1-m)
$$

where k is a positive constant.
Given that when $t=0, m=0$ and that the initial rate at which the chemical is produced is 0.5 kg per hour,
b find the value of k,
c show that, for $0 \leq m<1, \ln \left(\frac{1+m}{1-m}\right)=1-\mathrm{e}^{-t}$.
d find the time taken to produce 0.1 kg of the chemical,
e show that however long the process is allowed to run, the maximum amount of the chemical that will be produced is about 462 g .

