11K Modelling with Integration

1. The rate of increase of a population P of micro organisms at time t, in hours, is given by:

$$
\frac{d P}{d t}=3 P, \quad t>0
$$

Initially, the population was of size 8.
a) Find a model for P in the form $P=A e^{3 t}$, stating the value of A
b) Find, to the nearest hundred, the size of the population at the time $t=2$
c) Find the time at which the population will be 1000 times its starting value.
d) State one limitation of this model for large values of t
2. Water in a manufacturing plant is held in a large cylindrical tank of diameter 20 m . Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume (of the water).
a) Show that after t minutes after the tap is opened, $\frac{d h}{d t}=-k \sqrt[3]{h}$ for some constant k.
b) Show that the general solution to this differential equation may be written as $h=(P-Q t)^{\frac{3}{2}}$, where P and Q are constants

Initially, the height of the water is 27 m .10 minutes later, the height is 8 m .
c) Find the values of the constants P and Q
d) Find the time in minutes when the water is at a depth of 1 m

