Forming differential equations

Differential equations are useful because regularly in real-life, the rate of change of a variable is based on its current value. For example in Year 1, we saw a property of exponential growth is that the rate of change is proportional to the current value:

Q

The rate of increase of a rabbit population (with population P, where time is t) is **proportional to** the current population.

Form a differential equation, and find its general solution.

Further Example

[Textbook] Water in a manufacturing plant is held in a large cylindrical tank of diameter 20m. Water flows out of the bottom of the tank through a tap at a rate proportional to the cube root of the volume.

- (a) Show that t minutes after the tap is opened, $\frac{dh}{dt} = -k\sqrt[3]{h}$ for some constant k.
- (b) Show that the general solution of this differential equation may be written $h=(P-Qt)^{\frac{3}{2}}$, where P and Q are constants.

Initially the height of the water is 27m. 10 minutes later, the height is 8m.

- (c) Find the values of the constants P and Q.
- (d) Find the time in minutes when the water is at a depth of 1m.

Test Your Understanding

Edexcel C4 June 2005 Q8

Liquid is pouring into a container at a constant rate of 20 cm³ s⁻¹ and is leaking out at a rate proportional to the volume of the liquid already in the container.

(a) Explain why, at time t seconds, the volume, $V \text{ cm}^3$, of liquid in the container satisfies the differential equation

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 20 - kV,$$

where k is a positive constant.

The container is initially empty.

(b) By solving the differential equation, show that

$$V = A + Be^{-kt}$$
,

giving the values of A and B in terms of k.

Given also that $\frac{dV}{dt} = 10$ when t = 5,

(c) find the volume of liquid in the container at 10 s after the start.

(6)

(5)

Teachers/Students: | recommend also looking at Edexcel Jan 2008 Q8 which has a part (a) similar to the previous example.