SKILL #11: Differential Equations

(We're on the home straight!)

Differential equations are equations involving a mix of variables and derivatives, e.g. y, x and $\frac{dy}{dx}$.

'Solving' these equations means to get y in terms of x (with no $\frac{dy}{dx}$).

Q Find the general solution to $\frac{dy}{dx} = xy + y$

Another Example

Q Find the general solution to $(1 + x^2) \frac{dy}{dx} = x \tan y$

STEP 1: Get y to the side of $\frac{dy}{dx}$ by dividing and x to the other side. (you may need to factorise to separate out y first)
STEP 2: Integrate both sides with respect to x .
STEP 2b: If possible, try to combine your constant of integration with other terms (e.g. by letting $C = \ln k$ where k is another constant)
STEP 3: Make <i>y</i> the subject, if the question asks.

Differential Equations with Boundary Conditions

[Textbook] Find the general solution to $\frac{dy}{dx} = -\frac{3(y-2)}{(2x+1)(x+2)}$ Given that x=1 when y=4. Leave your answer in the form y=f(x)

Test Your Understanding

Edexcel C4 Jan 2012 Q4

Given that y = 2 at $x = \frac{\pi}{4}$, solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{y\cos^2 x} \,. \tag{5}$$

Key Points on Differential Equations

- Get y on to LHS by dividing (possibly factorising first).
- If after integrating you have ln on the RHS, make your constant of integration $\ln k$.
- Be sure to combine all your ln's together just as you did in C2.
 E.g.:

$$2\ln|x+1|-\ln|x| \quad \rightarrow$$

- Sub in boundary conditions to work out your constant –
 better to do sooner rather than later.
- Exam questions ♥ partial fractions combined with differential equations.