C4

Use the trapezium rule with n intervals of equal width to estimate the value of each integral.
a $\int_{1}^{5} x \ln (x+1) \mathrm{d} x \quad n=2$
b $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cot x \mathrm{~d} x \quad n=2$
c $\int_{-2}^{2} \mathrm{e}^{\frac{x^{2}}{10}} \mathrm{~d} x \quad n=4$
d $\int_{0}^{1} \arccos \left(x^{2}-1\right) \mathrm{d} x \quad n=4$
e $\int_{0}^{0.5} \sec ^{2}(2 x-1) \mathrm{d} x \quad n=5$
f $\int_{0}^{6} x^{3} \mathrm{e}^{-x} \mathrm{~d} x \quad n=6$

2

3

4

The shaded region in the diagram is bounded by the curve $y=\ln x$, the x-axis and the line $x=5$.
a Estimate the area of the shaded region to 3 decimal places using the trapezium rule with
i 2 strips
ii 4 strips
iii 8 strips
b By considering your answers to part a, suggest a more accurate value for the area of the shaded region correct to 3 decimal places.
c Use integration to find the true value of the area correct to 3 decimal places.
5

The shaded region in the diagram is bounded by the curve $y=\mathrm{e}^{x}-x$, the coordinate axes and the line $x=-4$. Use the trapezium rule with five equally-spaced ordinates to estimate the volume of the solid formed when the shaded region is rotated completely about the x-axis.

