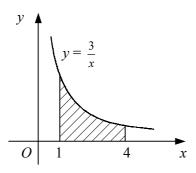
1



The diagram shows the curve with equation $y = \frac{3}{r}$, x > 0.

a Copy and complete the table below, giving the exact y-coordinate corresponding to each x-coordinate for points on the curve.

х	1	2	3	4
У				

The shaded region is bounded by the curve, the x-axis and the lines x = 1 and x = 4.

b Use the trapezium rule with all the values in your table to show that the area of the shaded region is approximately $4\frac{3}{8}$.

c With the aid of a sketch diagram, explain whether the true area is more or less than $4\frac{3}{8}$.

2 a Sketch the curve y = x(3x + 2) showing the coordinates of any points of intersection with the coordinate axes.

b Use the trapezium rule with 4 intervals of equal width to estimate the area bounded by the curve, the x-axis and the line x = 2.

c Find this area exactly using integration.

d Hence, find the percentage error in the estimate made in part **b**.

3 Use the trapezium rule with the stated number of intervals of equal width to estimate the area of the region enclosed by the given curve, the x-axis and the given ordinates.

a
$$y = \frac{3}{2x+1}$$

$$x = 4$$
 $x = 3$

a
$$y = \frac{3}{2x+1}$$
 $x = 4$ $x = 6$ 2 intervals
b $y = \lg (x^2 + 9)$ $x = 0$ $x = 3$ 3 intervals
c $y = x^2 \sin x$ $x = 0$ $x = \pi$ 4 intervals

$$x = 0$$
 $x =$

$$\mathbf{c} \quad y = x^2 \sin x$$

$$x = 0$$
 $x =$

d
$$y = \sqrt[3]{2x+5}$$
 $x = -2$ $x = 2$

$$x = -2$$
 $x = 2$

4 Use the trapezium rule with the stated number of equally-spaced ordinates to estimate the area of the region enclosed by the given curve, the x-axis and the given ordinates.

a
$$y = 3^x$$

$$r = 0$$

$$x = 3$$

b
$$y = \sin(\lg x)$$

$$x = 2$$

c
$$y = \frac{x}{x^3 + 2}$$

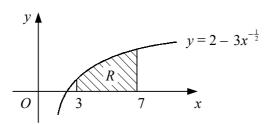
$$x = 0$$

b
$$y = \sin(\lg x)$$
 $x = 2$ $x = 2.4$ 3 ordinates
c $y = \frac{x}{x^3 + 2}$ $x = 0$ $x = 0.5$ 6 ordinates
d $y = \sqrt{\cos(\frac{1}{2}x)}$ $x = 0$ $x = \frac{2\pi}{3}$ 5 ordinates

$$x = 0$$

$$\frac{2\pi}{2}$$

5

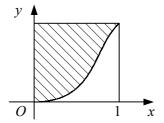


The diagram shows the finite region, R, which is bounded by the curve $y = 2 - 3x^{-\frac{1}{2}}$, the x-axis and the lines x = 3 and x = 7.

a Use the trapezium rule with 5 intervals of equal width to estimate the area of R.

b Use integration to find the exact area of *R*.

6



The diagram shows the curve $y = \sin x^2$, $0 \le x \le 1$ and the lines x = 1 and $y = \sin 1$.

a Use the trapezium rule with 5 strips of equal width to estimate the area bounded by the curve $y = \sin x^2$, the x-axis and the line x = 1, giving your answer to 4 decimal places.

The shaded region on the diagram is bounded by the curve, the y-axis and the line $y = \sin 1$. A flower bed is modelled by the shaded region, with the units on the axes in metres.

b Calculate an estimate for the area of the flower bed, correct to 2 significant figures.

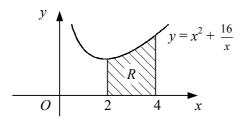
7 **a** Use the binomial theorem to expand $(1 + \frac{x}{2})^6$ in ascending powers of x up to and including the term in x^3 .

The finite region R is bounded by the curve $y = (1 + \frac{x}{2})^6$, the coordinate axes and the line x = 0.5

b Use your expression in $\bf a$ and integration to find an estimate for the area of R.

c Use the trapezium rule with 6 equally-spaced ordinates to find another estimate for the area of *R*.

8



The diagram shows the curve $y = x^2 + \frac{16}{x}$ for x > 0.

a Show that the stationary point on the curve has coordinates (2, 12).

The region R is bounded by the curve $y = x^2 + \frac{16}{x}$, the x-axis and the lines x = 2 and x = 4.

b Use the trapezium rule with 4 strips of equal width to estimate the area of R.

c State whether your answer to \mathbf{b} is an under-estimate or an over-estimate of the area of R.