11H part 2 Integrating Parametric Equations

Note that this was initially left out of the textbook, so depending on your edition, you may not have practise questions. I will be using the old C4 notes and examples to talk through the theory.

1. The cure has parametric equations

$$
x=t(1+t) \quad y=\frac{t}{1+t}
$$

Find the exact area of the region R, bounded by the curve C, the x-axis and the lines $x=0$ and $\mathrm{x}=2$

2. A curve has Parametric equations:

$$
x=5 t^{2} \quad y=t^{3}
$$

Work out

$$
\int_{5}^{20} y d x
$$

3. The diagram shows a sketch of the curve with Parametric equations:

The curve meets the x-axis at $x=0$ and $x=9$. The shaded region is bounded by the curve and the x-axis.

$$
x=t^{2} \quad y=2 t(3-t) \quad t \geq 0
$$

a) Find the value of t when:
i) $x=0$
ii) $x=9$
b) Find the Area of R
4. The diagram shows a sketch of the curve with Parametric equations:

$$
x=2 t^{2} \quad y=t\left(4-t^{2}\right)
$$

Calculate the finite area inside the loop...

