SKILL \#6: Integration by Parts

$$
\int x \cos x d x=?
$$

Just as the Product Rule was used to differentiate the product of two expressions, we can often use 'Integration by Parts' to integrate a product.

To integrate by parts:

$$
\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

Example 1

$$
\int x \cos x d x=? \quad \int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x
$$

STEP 1: Decide which thing will be u (and which $\frac{d v}{d x}$).

You're about to differentiate u and integrate $\frac{d v}{d x}$, so the idea is to pick them so differentiating u makes it 'simpler', and $\frac{d v}{d x}$ can be integrated easily. u will always be the x^{n} term UNLESS one term is $\ln x$.

```
STEP 2: Find }\frac{du}{dx}\mathrm{ and v.
```


STEP 3: Use the formula.

I just remember it as " $u v$ minus the integral of the two new things timesed together"

Example 2

Find

$\int x \ln x d x$

Here, the choice of u must be $\ln x$ because $\ln x$ is difficult to integrate

Example 3

Find $\quad \int \ln x d x$
Here, the 'trick' is to write the integral as $\int \mathbf{1} \times \boldsymbol{\operatorname { l n }} \boldsymbol{x} d \boldsymbol{x}$
Again, the choice of u must be $\ln x$

IBP twice! ${ }^{-)}$

Q Find $\int x^{2} e^{x} d x$

Example 5

Find
$\int e^{x} \cos x d x$

Test Your Understanding

Q Find $\int x^{2} \sin x d x$

