Modelling with vectors

In Mechanics, you will see certain things can be represented as a simple number (without direction), or as a vector (with direction):

Remember a 'scalar' just means a
normal number (in the context of
vectors). It can be obtained using the
magnitude of the vector.

Vector Quantity	Equivalent Scalar Quántity
Velocity	
e.g. $\binom{3}{4} \mathrm{~km} / \mathrm{h}$ This means the position vector of the object changes by $\binom{3}{4}$ each hour.	
Displacement	4
e.g. $\binom{-5}{12} \mathrm{~km}$	

Examples

1. A girl walks 2 km due east from a fixed point O to A, and then 3 km due south from A to B. Find
a) the total distance travelled
b) the position vector of B relative to O
c) $|\overrightarrow{O B}|$
d) The bearing of B from O.
2. In an orienteering exercise, a cadet leaves the starting point O and walks 15 km on a bearing of 120° to reach A, the first checkpoint. From A he walks 9 km on a bearing of 240° to the second checkpoint, at B. From B he returns directly to 0 .

Find:
a) the position vector of A relative to O
b) $|\overrightarrow{O B}|$
c) the bearing of B from O
d) the position vector of B relative O.

