Solving Geometric Problems

X is a point on $A B$ such that $A X: X B=3: 1 . M$ is the midpoint of $B C$. Show that $\overrightarrow{X M}$ is parallel to $\overrightarrow{O C}$.
$O A C B$ is a parallelogram, where $\overrightarrow{O A}=a$ and $\overrightarrow{O B}=b$. The diagonals $O C$ and $A B$ intersect at a point X. Prove that the diagonals bisect each other.
(Hint: Perhaps find $\overrightarrow{O X}$ in two different ways?)

Test your understanding

In the above diagram, $\overrightarrow{O A}=\boldsymbol{a}, \overrightarrow{O B}=\boldsymbol{b}$ and $\overrightarrow{O Q}=\frac{1}{3} \boldsymbol{a}$. We wish to find the ratio $O X: X C$.
a) If $\overrightarrow{O X}=\lambda \overrightarrow{O C}$, find an expression for $\overrightarrow{O X}$ in terms of $\boldsymbol{a}, \boldsymbol{b}$ and λ.
b) If $\overrightarrow{B X}=\mu \overrightarrow{B Q}$, find an expression for $\overrightarrow{O X}$ in terms of $\boldsymbol{a}, \boldsymbol{b}$ and μ.
c) By comparing coefficients or otherwise, determine the value of λ, and hence the ratio $O X: X C$.

Area of a triangle example

If $\overrightarrow{A B}=3 \boldsymbol{i}-2 \boldsymbol{j}$ and $\overrightarrow{A C}=\boldsymbol{i}-5 \boldsymbol{j}$. Determine $\angle B A C$.

Extension

[STEP 2010 Q7]

Relative to a fixed origin O, the points A and B have position vectors \boldsymbol{a} and \boldsymbol{b}, respectively. (The points O, A and B are not collinear.) The point C has position vector c given by

$$
\boldsymbol{c}=\alpha \boldsymbol{a}+\beta \boldsymbol{b}
$$

where α and β are positive constants with $\alpha+\beta<1$. The lines $O A$ and $B C$ meet at the point P with position vector \boldsymbol{p} and the lines $O B$ and $A C$ meet at the point Q with position vector \boldsymbol{q}. Show that

$$
\boldsymbol{p}=\frac{\alpha a}{1-\beta}
$$

and write down q in terms of α, β and b.
Show further that the point R with position vector r given by

$$
\boldsymbol{r}=\frac{\alpha \boldsymbol{a}+\beta \boldsymbol{b}}{\alpha+\beta},
$$

lies on the lines $O C$ and $A B$.
The lines $O B$ and $P R$ intersect at the point S. Prove that $\frac{O Q}{B Q}=\frac{O S}{B S}$.

