Solving Geometric Problems

X is a point on AB such that AX:XB=3:1. M is the midpoint of BC. Show that \overrightarrow{XM} is parallel to \overrightarrow{OC} .

OACB is a parallelogram, where $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$. The diagonals OC and AB intersect at a point X. Prove that the diagonals bisect each other.

(Hint: Perhaps find \overrightarrow{OX} in two different ways?)

Test your understanding

In the above diagram, $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$ and $\overrightarrow{OQ} = \frac{1}{3}\boldsymbol{a}$. We wish to find the ratio OX: XC.

a) If $\overrightarrow{OX} = \lambda \overrightarrow{OC}$, find an expression for \overrightarrow{OX} in terms of \boldsymbol{a} , \boldsymbol{b} and λ .

- b) If BX = μ BQ, find an expression for OX in terms of a, b and μ.
 c) By comparing coefficients or otherwise, determine the value of λ, and hence the ratio OX: XC.

Area of a triangle example

If $\overrightarrow{AB} = 3\mathbf{i} - 2\mathbf{j}$ and $\overrightarrow{AC} = \mathbf{i} - 5\mathbf{j}$. Determine $\angle BAC$.

Extension

[STEP 2010 Q7]

Relative to a fixed origin O, the points A and B have position vectors \boldsymbol{a} and \boldsymbol{b} , respectively. (The points O, A and B are not collinear.) The point C has position vector \boldsymbol{c} given by

$$c = \alpha a + \beta b$$

where α and β are positive constants with $\alpha+\beta<1$. The lines OA and BC meet at the point P with position vector \boldsymbol{p} and the lines OB and AC meet at the point Q with position vector \boldsymbol{q} . Show that

$$\boldsymbol{p} = \frac{\alpha a}{1 - \beta}$$

and write down q in terms of α , β and b.

Show further that the point R with position vector r given by

$$r = \frac{\alpha a + \beta b}{\alpha + \beta},$$

lies on the lines OC and AB.

The lines OB and PR intersect at the point S. Prove that $\frac{OQ}{BQ} = \frac{OS}{BS}$.