USING TRIGONOMETRIC IDENTITIES

The following are identities that you should know:

$\sin (A \pm B)$	$=$
$\cos (A \pm B)$	$=$
$\tan (A \pm B)$	$=$
$\sin 2 A$	$=$
$\cos 2 A$	$=$
$\cos 2 A$	$=$
$\cos 2 A$	$=$
$\tan 2 A$	$=$
$\sec ^{2} A$	
$\operatorname{cosec}^{2} A$	

We can use these identities to transform an expression that cannot be integrated into one that can be integrated.

These first examples focus on manipulation of the identities rather than integration.

Examples

1) $\sin 4 x=$
2) $2 \sin 3 x \cos 3 x=$
3) $\cos 5 x=$
4) $4 \cos ^{2} 3 x-2=$

SKILL \#3: Integrating using Trig Identities

Some expressions, such as $\sin ^{2} x$ and $\sin x \cos x$ can't be integrated directly, but we can use one of our trig identities to replace it with an expression we can easily integrate.

Q	Find $\int \sin ^{2} x d x$

Q Find $\int \sin 3 x \cos 3 x d x$

Q Find $\int \cos ^{2} x d x$

Check Your Understanding

Q Find $\int(\sec x+\tan x)^{2} d x$

Further examples
Show that

$$
\int_{\frac{\pi}{12}}^{\frac{\pi}{8}} \sin ^{2} x d x=\frac{\pi}{48}+\frac{1-\sqrt{2}}{8}
$$

