1 Integrate with respect to x

a
$$(x-2)^{7}$$

b
$$(2x+5)^3$$

c
$$6(1+3x)^4$$

d
$$(\frac{1}{4}x-2)^5$$

e
$$(8-5x)^{-1}$$

$$\mathbf{f} = \frac{1}{(x+7)^2}$$

$$g = \frac{8}{(4x-3)^5}$$

a
$$(x-2)^7$$
 b $(2x+5)^3$ **c** $6(1+3x)^4$ **d** $(\frac{1}{4}x-2)$
e $(8-5x)^4$ **f** $\frac{1}{(x+7)^2}$ **g** $\frac{8}{(4x-3)^5}$ **h** $\frac{1}{2(5-3x)^3}$

2

a
$$\int (3+t)^{\frac{3}{2}} dt$$

b
$$\int \sqrt{4x-1} \, dx$$

a
$$\int (3+t)^{\frac{3}{2}} dt$$
 b $\int \sqrt{4x-1} dx$ **c** $\int \frac{1}{2y+1} dy$

d
$$\int e^{2x-3} dx$$

$$e \int \frac{3}{2-7r} dr$$

d
$$\int e^{2x-3} dx$$
 e $\int \frac{3}{2-7r} dr$ **f** $\int \sqrt[3]{5t-2} dt$

$$\mathbf{g} \int \frac{1}{\sqrt{6-y}} \, \mathrm{d}y \qquad \qquad \mathbf{h} \int 5\mathrm{e}^{7-3t} \, \mathrm{d}t \qquad \qquad \mathbf{i} \int \frac{4}{3u+1} \, \mathrm{d}u$$

$$\mathbf{h} \int 5e^{7-3t} dt$$

$$\mathbf{i} \int \frac{4}{3u+1} du$$

Given f'(x) and a point on the curve y = f(x), find an expression for f(x) in each case. 3

a
$$f'(x) = 8(2x - 3)^3$$
, (2, 6)

b
$$f'(x) = 6e^{2x+4}$$
,

$$(-2, 1)$$

c
$$f'(x) = 2 - \frac{8}{4x-1}$$
,

$$(\frac{1}{2}, 4)$$

c
$$f'(x) = 2 - \frac{8}{4x - 1}$$
, $(\frac{1}{2}, 4)$ **d** $f'(x) = 8x - \frac{3}{(3x - 2)^2}$, $(-1, 3)$

Evaluate 4

a
$$\int_{0}^{1} (3x+1)^{2} dx$$

b
$$\int_{1}^{2} (2x-1)^{3} dx$$

a
$$\int_0^1 (3x+1)^2 dx$$
 b $\int_1^2 (2x-1)^3 dx$ **c** $\int_2^4 \frac{1}{(5-x)^2} dx$

d
$$\int_{-1}^{1} e^{2x+2} dx$$

d
$$\int_{-1}^{1} e^{2x+2} dx$$
 e $\int_{2}^{6} \sqrt{3x-2} dx$ **f** $\int_{1}^{2} \frac{4}{6x-3} dx$

$$\int_{1}^{2} \frac{4}{6x^{2}} dx$$

$$\mathbf{g} = \int_0^1 \frac{1}{\sqrt[3]{7x+1}} \, dx$$

h
$$\int_{-7}^{-1} \frac{1}{5x+3} dx$$

g
$$\int_0^1 \frac{1}{\sqrt[3]{7x+1}} dx$$
 h $\int_{-7}^{-1} \frac{1}{5x+3} dx$ **i** $\int_4^7 \left(\frac{x-4}{2}\right)^3 dx$

5 Find the exact area of the region enclosed by the given curve, the x-axis and the given ordinates. In each case, y > 0 over the interval being considered.

a
$$y = e^{3-x}$$
,

$$x=3$$
, $x=4$

b
$$y = (3x - 5)^3$$

$$x=2, \qquad x=3$$

c
$$y = \frac{3}{4x+2}$$

$$x=1, \qquad x=2$$

a
$$y = e^{3-x}$$
, $x = 3$, $x = 4$ **b** $y = (3x-5)^3$, $x = 2$, $x = 3$
c $y = \frac{3}{4x+2}$, $x = 1$, $x = 4$ **d** $y = \frac{1}{(1-2x)^2}$, $x = -2$, $x = 0$

$$x = -2, \quad x = 0$$

6

The diagram shows part of the curve with equation $y = \frac{12}{(2x+1)^3}$

Find the area of the shaded region bounded by the curve, the coordinate axes and the line x = 1.