Upper 6 Chapter 11

Integration

Chapter Overview

- 1. Integration
- 2. Integrals of the form f'(ax + b)
- 3. Using Trigonometric Identities
- 4. The Reverse Chain Rule
- 5. Integration by Substitution
- 6. Integration by Parts
- 7. Integration Using Partial Fractions
- 8. Area Under a Curve
- 9. The Trapezium Rule
- 10. Parametric Equations
- 11. Differential Equations
- 12. Forming Differential Equations

8.1	Know and use the Fundamental Theorem of Calculus	Integration as the reverse process of differentiation. Students should know that for indefinite integrals a constant of integration is required.
8.2	Integrate x^n (excluding $n = -1$) and related sums, differences and constant multiples. Integrate e^{kx} , $\frac{1}{x}$, $\sin kx$,	For example, the ability to integrate expressions such as $\frac{1}{2}x^2 - 3x^{-\frac{1}{2}}$ and $\frac{(x+2)^2}{\frac{1}{x^2}}$ is expected. x Given f'(x) and a point on the curve, Students should be able to find an equation of the curve in the form y = f(x). To include integration of standard functions
	x cos kx and related sums, differences and constant multiples.	such as $\sin 3x$, $\sec^2 2x$, $\tan x$, e^{5x} , $\frac{1}{2x}$. Students are expected to be able to use trigonometric identities to integrate, for example, $\sin^2 x$, $\tan^2 x$, $\cos^2 3x$.
8.3	Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves	Students will be expected to be able to evaluate the area of a region bounded by a curve and given straight lines, or between two curves. This includes curves defined parametrically. For example, find the finite area bounded by the curve $y = 6x - x^2$ and the line $y = 2x$ Or find the finite area bounded by the curve $y = x^2 - 5x + 6$ and the curve $y = 4 - x^2$.
8.4	Understand and use integration as the limit of a sum.	Recognise $\int_{a}^{b} f(x) dx = \lim_{\delta x \to 0} \sum_{x=a}^{b} f(x) \delta x$
8.5	Carry out simple cases of integration by substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively (Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction	Students should recognise integrals of the form $\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$. The integral $\int \ln x dx$ is required Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.
8.3	Evaluate definite integrals; use a definite integral to find the area under a curve and the area between two curves	Students will be expected to be able to evaluate the area of a region bounded by a curve and given straight lines, or between two curves. This includes curves defined parametrically.

INTEGRATION

Integration is the reverse of differentiation. We use known derivatives to integrate.

The following are integrals that you should know:

SKILL #1: Integrating Standard Functions

There's certain results you should be able to integrate straight off, by just thinking about the opposite of differentiation.

у	$\int y dx$	
x ⁿ		
e^x		The $ x $ has to do with problems
1		when <i>x</i> is negative (when ln <i>x</i> is not defined)
x		Domorphon my momorization
cos x		Remember my memorisation trick of picturing sin above cos
$\sin x$		from C3, so that 'going down' is
$\sec^2 x$		differentiating and 'going up' is integrating, and we change the
cosec x cot x		sign if the wrong way round.
$cosec^2x$		It's vital you remember this one.
sec x tan x		

Have a good stare at this slide before turning your paper over – let's see how many you remember...

Quickfire Questions (without cheating!)

$$\int \sec x \tan x \, dx =$$

$$\int \sin x \, dx =$$

$$\int \csc^2 x \, dx =$$

$$\int -\cos x \, dx =$$

Quickfire Questions (without cheating!)

$$\int \sec^2 x \, dx =$$

$$cosec \ x \cot x \ dx =$$

$$\int \frac{1}{x} dx =$$

$$-\sin x \, dx =$$

Quickfire Questions (without cheating!)

$$\int \csc^2 x \, dx =$$

$$\int \sin x \, dx =$$

$$\int \sec x \tan x \, dx =$$

$$\int \cos x \, dx =$$

Test Your Understanding

$$\int 2\cos x + \frac{3}{x} - \sqrt{x} \, dx =$$

$$\int \frac{\cos x}{\sin^2 x} \, dx = \int$$
Hint: What 'reciprocal' trig
functions does this simplify to?
$$[\text{Textbook}] \text{ Given that } \int_a^{3a} \frac{2x+1}{x} \, dx = \ln 12, \text{ find the exact value of } a.$$

$$[\text{Textbook}] \text{ Given that } \int_a^{3a} \frac{2x+1}{x} \, dx = \ln 12, \text{ find the exact value of } a.$$